转载自:http://cojs.tk/cogs/page/page.php?aid=30
-
最小生成树
-
Kruskal+ufs
int ufs(int x){ return f[x] == x ? x : f[x] = ufs(f[x]); } int Kruskal(int n,int m) { int w = 0; for(int i = 0; i < n; i++) f[i] = i; sort(e,e + m); for(int i = 0; i < m; i++) { int x = ufs(e[i].u),y = ufs(e[i].v); if(x != y) { f[x] = y; w += e[i].w; } } return w; }
-
prim
int Prim() { int w = 0; priority_queue<pair<int, int> > q; bool l[N] = {0}; l[1] = 1; q.push(make_pair(0, 1)); for(int k=1; k<n; k++) { int u = q.top().second; q.pop(); for(int i=0; i<G[u].size(); i++) if(!l[G[u][i]]) q.push(make_pair(-c[u][i], G[u][i])); while(!q.empty() && l[q.top().second]) q.pop(); l[q.top().second] = 1; w += -q.top().first; q.pop(); } return w; }
-
-
最短路径
-
Dijkstra+priority_queue
void Dijkstra(int s) { priority_queue<pair<int, int> > q; bool l[N] = {0}; l[s] = 1; fill_n(f, n, INF); f[s] = 0; q.push(make_pair(-f[s], s)); while(!q.empty()) { int u = q.front().second; q.pop(); for(int i=0; i<G[u].size(); i++) { int v = G[u][i]; if(f[v] > f[u] + c[u][i]) { f[v] = f[u] + c[u][i]; if(!l[v]) { l[v] = 1; q.push(make_pair(-f[v], v)); } } } } }
-
Bellman-Ford (SPFA)
void BellmanFord(int s) { // SPFA queue<int> q; bool l[N] = {0}; l[s] = 1; fill_n(f, n, INF); f[s] = 0; q.push(s); while(!q.empty()) { int u = q.front(); q.pop(); l[u] = 0; for(int i=0; i<G[u].size(); i++) { int v = G[u][i]; if(f[v] > f[u] + c[u][i]) { f[v] = f[u] + c[u][i]; if(!l[v]) { l[v] = 1; q.push(v); } } } } }
-
Floyd
void Floyd() { for(int k=0; k<n; k++) for(int i=0; i<n; i++) for(int j=0; j<n; j++) f[i][j] = min(f[i][j], f[i][k] + f[k][j]); }
-
-
二分图
- ufs 验证 Hungary
bool DFS(int u) { for(int i=0; i<G[u].size(); i++) { int v = G[u][i]; if(!l[v]) { l[v] = 1; if(!f[v] || DFS(f[v])) { f[v] = u; return true; } } } return false; } int Hungary() { int w = 0; for(int i=0; i<n; i++) { fill_n(l, l+n, 0); if(DFS(i)) w++; } return w; }
- ufs 验证 Hungary
-
连通分量
- Tarjan stack
stack<int> s; void Tarjan(int u) { dfn[u] = low[u] = ++time; l[u] = 1; s.push(u); for(int i=0; i<G[u].size(); i++) { int v = G[u][i]; if(!dfn[v]) { Tarjan(v); low[u] = min(low[u], low[v]); } else if(l[v]) low[u] = min(low[u], dfn[v]); } if(dfn[u] == low[u]) { w++; do {int v; l[v = s.top()] = 0; f[v] = w; s.pop(); } while(u != v); } } void SCC() { fill_n(dfn, n, 0); for(int i=0; i<n; i++) if(!dfn(i)) Tarjan(i); }
- Tarjan stack
-
网络流
- 费用流:Bellman-Ford 找增广路,或者用贪心求解
- 最大流:Edmonds-KarpS