题目
Description
This task will exclusively concentrate only on the arrays where all elements equal 1 and/or 2.
Array a is k-period if its length is divisible by k and there is such array b of length k, that a is represented by array b written exactly times consecutively. In other words, array a is k-periodic, if it has period of length k.
For example, any array is n-periodic, where n is the array length. Array [2, 1, 2, 1, 2, 1] is at the same time 2-periodic and 6-periodic and array [1, 2, 1, 1, 2, 1, 1, 2, 1] is at the same time 3-periodic and 9-periodic.
For the given array a, consisting only of numbers one and two, find the minimum number of elements to change to make the array k-periodic. If the array already is k-periodic, then the required value equals 0.
Input
The first line of the input contains a pair of integers n, k (1 ≤ k ≤ n ≤ 100), where n is the length of the array and the value n is divisible by k. The second line contains the sequence of elements of the given array a1, a2, ..., an (1 ≤ ai ≤ 2), ai is the i-th element of the array.
Output
Print the minimum number of array elements we need to change to make the array k-periodic. If the array already is k-periodic, then print 0.
Sample Input
Input
6 2
2 1 2 2 2 1Output
1
Input
8 4
1 1 2 1 1 1 2 1Output
0
Input
9 3
2 1 1 1 2 1 1 1 2Output
3
Hint
In the first sample it is enough to change the fourth element from 2 to 1, then the array changes to [2, 1, 2, 1, 2, 1].
In the second sample, the given array already is 4-periodic.
In the third sample it is enough to replace each occurrence of number two by number one. In this case the array will look as [1, 1, 1, 1, 1, 1, 1, 1, 1] — this array is simultaneously 1-, 3- and 9-periodic.
题解
判断长度为 n
的字符串
以 k
为循环长度
最少改变( 1
变成 2
或者 2
变成 1
)多少次可以满足循环
对于每一位,最后的效果是每个循环节,这一位的数字相同
由于只有可能是 1
和 2
可以记录 1
出现的次数 cnt
改变的次数就是 min(cnt,k-cnt)
最后将所有的改变次数加起来即可
代码
/* By:OhYee Github:OhYee Blog:http://www.oyohyee.com/ Email:oyohyee@oyohyee.com かしこいかわいい? エリーチカ! 要写出来Хорошо的代码哦~ */ #include <cstdio> #include <algorithm> #include <cstring> #include <cmath> #include <string> #include <iostream> #include <vector> #include <list> #include <queue> #include <stack> #include <map> #include <set> #include <functional> #include <bitset> #include <iomanip> using namespace std; const int maxn = 105; int num[maxn]; bool Do() { int n,k; if(!(cin >> n >> k)) return false; int p = n / k; memset(num,0,sizeof(num)); for(int i = 1;i <= n;i++) { int t; cin >> t; if(t == 1) num[i%k]++; } int ans = 0; for(int i = 0;i < k;i++) { ans += min(p- num[i],num[i]); } cout << ans << endl; return true; } int main() { cin.tie(0); cin.sync_with_stdio(false); while(Do()); return 0; }