题目
Description
Computing the exact number of ways that N things can be taken M at a time can be a great challenge when N and/or M become very large. Challenges are the stuff of contests. Therefore, you are to make just such a computation given the following:
GIVEN: 5 <= N <= 100; 5 <= M <= 100; M <= N
Compute the EXACT value of: C = N! / (N-M)!M!
You may assume that the final value of C will fit in a 32-bit Pascal LongInt or a C long. For the record, the exact value of 100! is:
93,326,215,443,944,152,681,699,238,856,266,700,490,715,968,264,381,621, 468,592,963,895,217,599,993,229,915,608,941,463,976,156,518,286,253, 697,920,827,223,758,251,185,210,916,864,000,000,000,000,000,000,000,000Input
The input to this program will be one or more lines each containing zero or more leading spaces, a value for N, one or more spaces, and a value for M. The last line of the input file will contain a dummy N, M pair with both values equal to zero. Your program should terminate when this line is read.
Output
The output from this program should be in the form:
N things taken M at a time is C exactly.Sample Input
100 6
20 5
18 6
0 0Sample Output
100 things taken 6 at a time is 1192052400 exactly.
20 things taken 5 at a time is 15504 exactly.
18 things taken 6 at a time is 18564 exactly.
题解
题目题意比较简单 计算N!/(N-M)!M!
关键在于数值的计算上
尽管最后结果我们或许可以保存下,但是其中间要乘到很大的数再除下去,因此要尽可能让中间数小
由于N>M,我们可以剩下很大一部分乘法,只需计算N*(N-1)*······*(M+2)*(M+1)
因此,比较下M和N-M,选择其中较大的与N!约分
然后在计算另一部分,分母和分子同时乘数,每乘一次进行一次约分(gcd)
这样就能在不溢出的情况下计算出我们想要的答案
代码
/* By:OhYee Github:OhYee Email:oyohyee@oyohyee.com Blog:http://www.cnblogs.com/ohyee/ かしこいかわいい? エリーチカ! 要写出来Хорошо的代码哦~ */ #include <cstdio> #include <algorithm> #include <cstring> #include <cmath> #include <string> #include <iostream> #include <vector> #include <list> #include <queue> #include <stack> using namespace std; //DEBUG MODE #define debug 0 //循环 #define REP(n) for(int o=0;o<n;o++) unsigned long long gcd(unsigned long long a, unsigned long long b) { return b == 0 ? a : gcd(b, a%b); } bool Do() { int n, m; if (scanf("%d%d", &n, &m), n == 0 && m == 0) return false; unsigned long long ans = 1; int a = max(m, n - m); int b = min(m, n - m); unsigned long long t = 1; for (int i = n, j = 2; i > a; i--, j++) { ans *= i; if (j <= b || t > 1) { if (j <= b) t *= j; if (t > 1) { unsigned long long q = gcd(ans, t); ans /= q; t /= q; } } } printf("%d things taken %d at a time is %llu exactly.\n", n, m, ans); return true; } int main() { while (Do()); return 0; }