题目
Description
Gigel has a strange "balance" and he wants to poise it. Actually, the device is different from any other ordinary balance.
It orders two arms of negligible weight and each arm's length is 15. Some hooks are attached to these arms and Gigel wants to hang up some weights from his collection of G weights (1 <= G <= 20) knowing that these weights have distinct values in the range 1..25. Gigel may droop any weight of any hook but he is forced to use all the weights.Finally, Gigel managed to balance the device using the experience he gained at the National Olympiad in Informatics. Now he would like to know in how many ways the device can be balanced.
Knowing the repartition of the hooks and the set of the weights write a program that calculates the number of possibilities to balance the device.
It is guaranteed that will exist at least one solution for each test case at the evaluation.
Input
The input has the following structure:
• the first line contains the number C (2 <= C <= 20) and the number G (2 <= G <= 20);
• the next line contains C integer numbers (these numbers are also distinct and sorted in ascending order) in the range -15..15 representing the repartition of the hooks; each number represents the position relative to the center of the balance on the X axis (when no weights are attached the device is balanced and lined up to the X axis; the absolute value of the distances represents the distance between the hook and the balance center and the sign of the numbers determines the arm of the balance to which the hook is attached: '-' for the left arm and '+' for the right arm);• on the next line there are G natural, distinct and sorted in ascending order numbers in the range 1..25 representing the weights' values.
Output
The output contains the number M representing the number of possibilities to poise the balance.
Sample Input
2 4
-2 3
3 4 5 8
Sample Output
2
题解
动态规划问题
状态分析
采用动态规划,可以看出有一维是使用前i个砝码
最后一层的意义是:将第i个砝码加入到天平系统中,使天平达到平衡
则每一层的意义是:将第i个砝码加入到天平系统中,使天平达到特定的状态
对于天平来说,平衡状态可以用力矩表示
i为使用的砝码个数 j为力矩
答案应该为dp[G][0]
,即使用G个砝码(全部用完),并且力矩为0(保持平衡)
初始状态为dp[0][0]=1
(使用前0个砝码时保持平衡,即不放置砝码平衡)
按照样例有:
dp[4][0]=dp[3][16]+dp[3][-24] dp[3][16]=dp[2][26]+dp[2][1] dp[2][26]=dp[1][34]+dp[1][13] dp[1][13]=dp[0][19]+dp[0][4] dp[1][34]=dp[0][40]+dp[0][25] dp[2][1]=dp[1][9]+dp[1][-11] dp[1][9]=dp[0][15]+dp[0][0] dp[1][-11]=dp[0][-5]+dp[0][-20] dp[3][-24]=dp[2][-14]+dp[2][-39] dp[2][-14]=dp[1][-6]+dp[1][-28] dp[1][-6]=dp[0][0]+dp[0][-15] dp[1][-28]=dp[0][-22]+dp[0][-37] dp[2][-39]=dp[1][-31]+dp[1][-51] dp[1][-31]=dp[0][-25]+dp[0][-40] dp[1][-51]=dp[0][-45]+dp[0][-60]
dp[i][j]=dp[i-1][j-weight[i]*hook[0]]+dp[i-1][j-weight[i]*hook[1]]+......
即 使用i个砝码且力矩为j 等于 使用i-1个砝码且力矩为(j减去砝码i可能的力矩)
也即dp[i][j]+=dp[i-1][j-weight[i]*hook[k]] k=0,1......k-1
由于下标不能为负数,因此要将力矩变为正数
钩子在-15~+15之间 砝码最多20个,每个最终25 即力矩最大为 15*20*25=7500
原力矩范围为 -7500~0~7500
加上7500后有 0~7500~15000
代码
/* By:OhYee Github:OhYee Email:oyohyee@oyohyee.com Blog:http://www.cnblogs.com/ohyee/ かしこいかわいい? エリーチカ! 要写出来Хорошо的代码哦~ */ #include <cstdio> #include <algorithm> #include <cstring> #include <cmath> #include <string> #include <iostream> #include <vector> #include <list> #include <queue> #include <stack> #include <map> using namespace std; //DEBUG MODE #define debug 0 //循环 #define REP(n) for(int o=0;o<n;o++) int C,G;//C钩子数 G砝码数 const int maxn = 25; int hook[maxn];//hook钩子位置 int weight[maxn];//weight砝码重量 int dp[maxn][15005]; bool Do() { if(scanf("%d%d",&C,&G) == EOF) return false; REP(C) scanf("%d",&hook[o+1]); REP(G) scanf("%d",&weight[o+1]); //DP /* 状态分析 采用动态规划,可以看出有一维是使用前i个砝码 最后一层的意义是:将第i个砝码加入到天平系统中,使天平达到平衡 则每一层的意义是:将第i个砝码加入到天平系统中,使天平达到特定的状态 对于天平来说,平衡状态可以用力矩表示 i为使用的砝码个数 j为力矩 答案应该为dp[G][0],即使用G个砝码(全部用完),并且力矩为0(保持平衡) 初始状态为dp[0][0]=1(使用前0个砝码时保持平衡,即不放置砝码平衡) 按照样例有: dp[4][0]=dp[3][16]+dp[3][-24] dp[3][16]=dp[2][26]+dp[2][1] dp[2][26]=dp[1][34]+dp[1][13] dp[1][13]=dp[0][19]+dp[0][4] dp[1][34]=dp[0][40]+dp[0][25] dp[2][1]=dp[1][9]+dp[1][-11] dp[1][9]=dp[0][15]+dp[0][0] dp[1][-11]=dp[0][-5]+dp[0][-20] dp[3][-24]=dp[2][-14]+dp[2][-39] dp[2][-14]=dp[1][-6]+dp[1][-28] dp[1][-6]=dp[0][0]+dp[0][-15] dp[1][-28]=dp[0][-22]+dp[0][-37] dp[2][-39]=dp[1][-31]+dp[1][-51] dp[1][-31]=dp[0][-25]+dp[0][-40] dp[1][-51]=dp[0][-45]+dp[0][-60] dp[i][j]=dp[i-1][j-weight[i]*hook[0]]+dp[i-1][j-weight[i]*hook[1]]+...... 即 使用i个砝码且力矩为j 等于 使用i-1个砝码且力矩为(j减去砝码i可能的力矩) 也即dp[i][j]+=dp[i-1][j-weight[i]*hook[k]] k=0,1......k-1 由于下标不能为负数,因此要将力矩变为正数 钩子在-15~+15之间 砝码最多20个,每个最终25 即力矩最大为 15*20*25=7500 原力矩范围为 -7500~0~7500 加上7500后有 0~7500~15000 */ memset(dp,0,sizeof(dp)); dp[0][0+7500] = 1; for(int i = 1;i <= G;i++) for(int j = 1;j <= 15000;j++) for(int k = 1;k <= C;k++) if(j - weight[i] * hook[k] >= 0 && j-weight[i]*hook[k]<=15000) dp[i][j] += dp[i - 1][j - weight[i] * hook[k]]; printf("%d\n",dp[G][7500]); return true; } int main() { while(Do()); return 0; }